Q	Question		Answer	Marks		Guidance
1	(i)		$4 + \frac{1}{2}$ of $18 = 4 + 9 = 13$	M1 A1 [2]	For ¹ / ₂ of 18 cao	13/100 gets M1A0
	(ii)		(Median) = 50.5^{th} value	M1 M1	For 50.5 seen For attempt to find this	SC2 for use of 50 th value leading to Est = $140 + (25/29 \times 5) = 144.3$ (SC1 if over-specified)
			Est = $140 + \left(\frac{25.5}{29}\right) \times 5$ or = $140 + \left(\frac{50.5 - 25}{54 - 25}\right) \times 5$ = 144.4	A1 [3]	value	or Est = $145 - \left(\frac{3.5}{29}\right) \times 5 = 144.4$ NB no marks for mean = 144.35 NB Watch for over-specification

Question	Answer				Marks		Guidance
1 (iii)	Height $125 \le x \le 140$ $140 < x \le 145$ $145 < x \le 150$ $150 < x \le 160$ $160 < x \le 170$	Fre 25 29 24 18 4	Group width 15 5 5 10 10	Frequency density 1.67 5.80 4.80 1.80 0.40	M1 A1	For fd's - at least 3 correct Accept any suitable unit for fd such as eg freq per cm. correct to at least one dp allow 1.66 but not 1.6 for first fd	M1 can be also be gained from freq per $10 - 16.7$, 58, 48, 18, 4 (at least 3 correct) or freq per $5 - 8.35$, 29, 24, 9, 2 for all correct. If fd not explicitly given, M1 A1 can be gained from all heights correct (within one square) on histogram (and M1A0 if at least 3 correct)
	Attsrep Attsre		5 150 155 16 Height	0 165 170 175	G1 W1	linear scales on both axes and label on vertical axis width of bars	Linear scale and label on vertical axis IN RELATION to first M1 mark ie fd or frequency density or if relevant freq/10, etc (NOT eg fd/10). However allow scale given as fd×10, or similar Accept f/w or f/cw (freq/width or freq/class width) Can also be gained from an accurate key G0 if correct label but not fd's. Must be drawn at 125, 140 etc NOT
					H1	height of bars	 124.5 or 125.5 etc NO GAPS ALLOWED Must have linear scale. No inequality labels on their own such as 125≤S<140, etc but allow if a clear horizontal linear scale is also given. Ignore horizontal label. Height of bars – must be linear vertical scale. FT of heights dep on at least 3 heights correct and all must agree with their

Q	Questi	on	Answer	Marks		Guidance
				[5]		fds If fds not given and at least 3 heights correct then max M1A0G1W1H0 Allow restart with correct heights if given fd wrong (for last three marks only)
1	(iv)		4 boys 0.6 × 15 = 9 girls So 5 more girls	M1 A1 A1	For 0.6 × 15 For 9 girls cao	Or $45 \times 0.2 = 9$ (number of squares and 0.2 per square)
				[3]		
	(v)		Frequencies and midpoints for girls areHeight132.5142.5147.5155167.5Frequency182331199	B1 B1	For at least three frequencies correct At least three midpoints correct	No further marks if not using midpoints
			So mean = $\frac{(132.5 \times 18) + (142.5 \times 23) + (147.5 \times 31) + (155 \times 19) + (167.5 \times 9)}{100}$ $- (2385) + (3277.5) + (4572.5) + (2945) + (1507.5)$	M1 M1* Dep on M1	For attempt at $\sum xf$ For division by 100	For sight of at least 3 <i>xf</i> pairs
			$= \frac{146.9}{(Exact answer 146.875)}$	A1	Ca	Allow answer 146.9 or 147 but not 150 NB Accept answers seen without working (from calculator)
				[5]	NB Watch for over- specification	Use of 'not quite right' midpoints such as 132.49 or 132.51 etc can get B1B0M1M1A0

Question			er		Marks	Guidance
	Engine size $500 \le x \le 1000$ $1000 < x \le 1500$ $1500 < x \le 2000$ $2000 < x \le 3000$ $3000 < x \le 5000$ 0.05 0.04 0.03 0.02 0.01 0 0 0 0 0 0 0 0		Group width 500 500 1000 2000 0 2000 0 2500 3000 3500 - ngine Size	Frequency density 0.014 0.044 0.052 0.018 0.0035	A1 G1(L1)	At least 4 fds correct for M1 M1 can be also be gained from freq per 1000 – 14, 44, 52, 18, 3.5 (at least 4 correct) and A1 for all correct or freq per 500 - 7, 22, 26, 9, 1.75 Accept any suitable unit for fd, eg freq per 1000, BUT NOT FD per 1000 Allow fds correct to at least three dp If fd not explicitly given, M1 A1 can be gained from all heights correct (within one square) on histogram (and M1A0 if at least 4 correct) Allow restart with correct heights if given fd wrong For fd's all correct linear scales on both axes and label on vertical axis Label required on vert axis IN RELATION to first M1 mark ie fd or frequency density or if relevant freq/1000, etc (NOT fd/1000, but allow fd×1000, etc) Accept f/w or f/cw (freq/width or freq/class width) Ignore horizontal label and allow horizontal scale to start at 500 Can also be gained from an accurate key
	INCORRECT DIA Frequency diagram Thus frequency der gets MAX M0A0G Frequency polygo	s can get M0, nsity = frequen 60G1G0	x x = x x x x x x x x x x x x x x x x x	MAXIMUM uency/midpoint etc	G1(W1)	Width of bars Must be drawn at 500, 1000etc NOT 499.5 or 500.5 etc NO GAPS ALLOWED Must have linear scale. No inequality labels on their own such as 500≤S<1000, etc but allow if a clear horizontal linear scale is also given.

C	Question	er	Marks	Guidance
			G1(H1)	Height of bars FT of heights <i>dep</i> on at least 3 heights correct and all must agree with their fds If fds not given and one height is wrong then max M1A0G1G1G0 – visual check on y (within one square) –no need to measure precisely
2	(ii)	Do not know exact highest and lowest values so cannot tell what the midrange is. OR No and a counterexample to show it may not be 2750 OR (500 + 5000) / 2 = 2750. But very unlikely to be absolutely correct but probably close to the true value. Some element of doubt needed. Allow 'Likely to be correct'	E1	Allow comment such as 'Highest value could be 5000 and lowest could be 500 therefore midrange could be 2750' NO mark if incorrect calculation Sight of 1750 AND 3000 (min and max of midrange) scores E1
	(iii)	Mean = $\frac{(750 \times 7) + (1250 \times 22) + (1750 \times 26) + (2500 \times 18) + (4000 \times 7)}{80}$ $= \frac{151250}{80} = 1891$ $\sum x^2 f = (750^2 \times 7) + (1250^2 \times 22) + (1750^2 \times 26) + (2500^2 \times 18) + (4000^2 \times 7))$ $= 3937500 + 34375000 + 79625000 + 112500000 + 112000000$ $= 342437500$ $Sxx = 342437500 - \frac{151250^2}{80} = 56480469$ $s = \sqrt{\frac{56480469}{79}} = \sqrt{714943} = 846$ Only an estimate since the data are grouped.	M1 A1 M1 A1 E1 indep [5]	For midpoints (at least 3 correct) No marks for mean or sd unless using midpoints Answer must <u>NOT</u> be left as improper fraction CAO Accept correct answers for mean (1890 or 1891) and sd (850 or 846 or 845.5) from calculator even if eg wrong S_{xx} given For sum of at least 3 correct multiples fx^2 Allow M1 for anything which rounds to 342400000 Only penalise once in part (iii) for over specification, even if mean and standard deviation both over specified. Allow SC1 for RMSD 840.2 or 840 from calculator Or for any mention of midpoints or 'don't have actual data' or 'data are not exact' oe

Question	er	Marks	Guidance
2 (iv)	$\overline{x} - 2s = 1891 - (2 \times 846) = 199$ Allow 200 $\overline{x} + 2s = 1891 + (2 \times 846) = 3583$ Allow 3580 or 3600	M1 A1	For either. FT any positive mean and their positive sd/rmsd for M1 Only follow through numerical values, not variables such as <i>s</i> , so if a candidate does not find <i>s</i> but then writes here 'limit is 40.76+ 2 × standard deviation', do NOT award M1 No marks in (iv) unless using $\overline{x} + 2s$ or $\overline{x} - 2s$ For both (FT) Do NOT penalise over specification here as it is not the final
	So there are probably some outliers	E1	Must include an element of doubt Dep on upper limit in range 3000 – 5000 Allow comments such as 'any value over 3583 is an outlier' Ignore comments about possible outliers at lower end.
(v)	Number of cars over 2000 cm ³ = $25/80 \times 2.5$ million = 781250 So duty raised = $781250 \times \pounds 1000 = \pounds 781$ million	M1 M1 indep A1 [3]	For 25/80× 2.5 million or (18+7) /80× 2.5 million For something × £1000 even if this is the first step CAO NB £781250000 is over specified so only 2/3
(vi)	Because the numbers of cars sold with engine size greater than 2000 cm ³ might be reduced due to the additional duty.	E1 [1]	Allow any other reasonable suggestion Condone 'sample may not be representative' Allow 'sample is not of NEW cars'

3	(i)	$Percentage = \frac{40}{200} \times 100 = 20$	M1 A1	For 40 seen or implied CAO	
			[2]		
	(ii)	Median = 5.2 kg	B1		
		Q1 = 4.2 $Q3 = 5.8$	B1	For Q1 or Q3	Allow 4.2 to 4.3 for Q1
		Inter-quartile range $= 5.8 - 4.2 = 1.6$	B1	For IQR	Dep on both quartiles correct
			[3]		

Q	uesti	on	er	Marks	Guidance	Additional Guidance
3	3 (iii)		Lower limit $4.2 - (1.5 \times 1.6) = 1.8$	B1	For 1.8 ft	Any use of <u>median</u> \pm 1.5 IQR scores B0 B0
			Upper limit $5.8 + (1.5 \times 1.6) = 8.2$	B1	For 8.2 ft	EO
			So there are one or more outliers (if any lamb weighs more	E1	Dep on their 1.8 and 8.2	E0 if say some outliers at bottom end,
			than 8.2 kg)		Allow any number of	unless lower limit > 2.0
					outliers ≤ 5	If FT leads to limits above 9.0 and below
						2.0 then E0
			Should not be disregarded because:	E1	Indep Must give reason.	No marks for ± 2 or 3 IQR
			'Nothing to suggest they are not genuine items of data'			With 4.3 and 5.8 lower = 2.05 and upper
			Allow other convincing reasons such as very few so will			= 8.05
			not make much difference			In this part FT their values from (ii) if
						sensibly obtained but not from location ie
				[4]		12.5, 37.5 No marks for use of mean $\pm 2s$
	(in)		Median for Welsh Mountain = 3.6	B1		No marks for use of mean $\pm 2s$
	(iv)					
			IQR for Welsh Mountain $= 0.8$	B1 E1	Must imply suggested	FT their medians
			Welsh Mountain lambs have lower average weight than crossbred	indep	Must imply average or CT, not just median.	FT their IQRs
			clossoled	maep	Allow generally lighter	Can get max B1B0E1E1 for use of
			Welsh Mountain lambs also have lower variation in weight	E1	Must imply spread or	C
			than crossbred	indep	variation, not just IQR	range
				mucp	or range	
					Allow correct comment	
					on consistency	
				[4]	on consistency	
	(v)		Median unchanged	E1		
			IQR unchanged OR range or spread increased	E1	even if used IQR in (iv)	E2 for 'Both comparisons remain the
						same'
				[2]		E1 for 'the range remains smaller'

(Question		Answer	Marks	Guidance	Additional Guidance
3	(vi)		$P(\text{Crossbred} > 3.9) = \frac{165}{200}$	B1		Allow 162 to 165 out of 200
			P(Welsh Mountain > 3.9) = $\frac{1}{4}$ P(Both > 3.9) = $\frac{165}{200} \times \frac{1}{4} = \frac{165}{800} = \frac{33}{160} = 0.206$	B1 M1	For product of their probabilities, provided one is correct CAO	Allow answers in range 0.2025 to 0.20625 with correct working
				A1		
				[4]		